BTS OPTICIEN LUNETIER

Mathématiques SESSION 2011

Note : ce corrigé n'a pas de valeur officielle et n'est donné qu'à titre informatif sous la responsabilité de son auteur par Acuité.

Proposition de corrigé par Laurent Deshayes, professeur du Lycée Technique Privé d'Optométrie de Bures-sur-Yvette

EXERCICE 1

A. 1° L'équation de la droite de régression de y en x, obtenue par la méthode des moindres carrés, est : y = 2,73x - 1091.

$$2^{\circ} y = 2,73 \times 416 - 1091 \approx 45$$

Pour une longueur d'onde de 416 nm, on peut estimer le coefficient de transmission à 45 %.

B.1°

a) La fonction f est dérivable sur l'intervalle $[0; +\infty[$ et :

$$f(x) = 90 - 89 \times \frac{1}{u(x)}$$
 avec $u(x) = 1 + e^{0.2(x-416)}$.

donc f'(x) =
$$-89 \times (-\frac{u'(x)}{(u(x))^2})$$
 avec u'(x) = $0.2 e^{0.2(x-416)}$.

Donc f'(x) = 89 x 0,2
$$\frac{e^{0,2(x-416)}}{(1+e^{0,2(x-416)})^2}$$
, pour tout x de l'intervalle [0; + ∞ [.

b)
$$e^{0.2(x-416)} > 0$$
, sur l'intervalle $[0; +\infty[$,

$$(1 + e^{0.2(x-416)})^2 > 0$$
, sur l'intervalle $[0; +\infty[$,

donc f'(x) > 0, sur l'intervalle
$$[0; +\infty[$$

donc la fonction f est strictement croissante sur l'intervalle $[0; +\infty[$.

$$2^{\circ}$$
 a) $\lim_{x \to +\infty} f(x) = 90$

b)
$$y = 90$$

c)
$$y = 4,45x - 1805,7$$

3°a) Pour tout x de l'intervalle
$$[0; +\infty[$$
,

$$\frac{89}{1 + e^{0,2(x-416)}} = 89 \frac{e^{-0,2(x-416)}}{e^{-0,2(x-416)}(1 + e^{0,2(x-416)})} = 89 \frac{e^{-0,2(x-416)}}{e^{-0,2(x-416)} + 1}$$

et 445 x 0,2 = 89

donc, pour tout x de l'intervalle $[0; +\infty[$, $f(x) = 90 - 445 \times 0, 2 \frac{e^{-0.2(x-416)}}{1+e^{-0.2(x-416)}}$.

b)
$$f(x) = 90 + 445 \frac{-0.2e^{-0.2(x-416)}}{1+e^{-0.2(x-416)}} = 90 + 445 \frac{u'(x)}{u(x)}$$

$$avec: \ u(x) = 1 + e^{-0.2(x-416)} \qquad donc \ u(x) > 0 \ sur \ l'intervalle \ [0 \ ; + \infty[.$$

$$u'(x) = -0.2 \ e^{-0.2(x-416)}.$$

On en déduit qu'une primitive de la fonction f sur l'intervalle $[0; +\infty[$ est la fonction F définie sur l'intervalle $[0; +\infty[$ par $F(x) = 90x + 445 \ln(1 + e^{-0.2(x-416)})$.

c) Soit A cette aire.

A =
$$\int_{380}^{550} f(x) dx$$
 car la fonction f est positive sur l'intervalle [380; 550]

$$A = [F(x)]_{380}^{550} = F(550) - F(380)$$

$$= 90 \times 550 + 445 \ln(1 + e^{-0.2(550 - 416)}) - 90 \times 380 + 445 \ln(1 + e^{-0.2(380 - 416)}) \approx 12095,67.$$

EXERCICE 2

 $A.1^{\circ}$

a) On considère une épreuve élémentaire (qui consiste à prélever un seul produit) qui a exactement 2 issues : le produit est défectueux de probabilité p(E) = 0,05 ou non.
 On répète 40 fois cette épreuve élémentaire de façon indépendante (car le tirage est assimilé à un tirage avec remise).

Donc la variable aléatoire X qui, à tout prélèvement ainsi défini, associe le nombre de produits défectueux suit la loi binomiale de paramètres 40 et 0,05.

b)
$$P(X=0) = {40 \choose 0} 0,05^0 \ 0,95^{40} = 0,95^{40} \approx 0,129.$$

- c) $\lambda = np \text{ où } n = 40 \text{ et } p = 0.05 \text{ donc } \lambda = 40 \text{ x } 0.05 = 2.$
- d) $\begin{array}{ll} & p(X_1 \leq 4 \) \approx 0.135 + 0.271 + 0.271 + 0.180 + 0.09 \approx 0.947. \\ & \text{la probabilit\'e qu'il y ait plus de quatre produits défectueux dans le prélèvement est :} \\ & p(X_1 > 4) = 1 p(X_1 \leq 4 \) \approx 1 0.947 \approx 0.053. \end{array}$

2°

- a) La loi binomiale de paramètres n = 400 et p = 0.05 peut être approchée par la loi normale de moyenne $m = np = 400 \times 0.05 = 20$ et d'écart type $\sigma = \sqrt{npq} = \sqrt{400 \times 0.05 \times 0.95} = \sqrt{19} \approx 4.4$.
- b) La variable aléatoire Z suit la loi normale $\mathcal{N}(20;4,4)$ donc la variable aléatoire T définie par $T=\frac{Z-20}{4.4}$ suit la loi normale $\mathcal{N}(0,1)$.

$$P(Z \le 30.5) = P(T \le \frac{30.5 - 20}{44}) \approx \Pi(2.39) \approx 0.9916 \approx 0.992.$$

B.

1° Sur l'échantillon, on obtient une fréquence f des produits présentant une erreur d'étiquetage égale à $\frac{6}{100} = 0.06$.

Donc l'estimation ponctuelle de la proportion inconnue p est : f = 0.06.

2° L'intervalle de confiance est : $\left[f - t\sqrt{\frac{f(1-f)}{n-1}}\right]$; $f + t\sqrt{\frac{f(1-f)}{n-1}}$ avec f = 0.06; n = 100 et le réel t est tel que $2\Pi(t) - 1 = 0.90$ (car le coefficient de confiance est de 90%)

calcul de t :
$$2\Pi(t) - 1 = 0.90$$

 $\Pi(t) = \frac{1 + 0.90}{2} = 0.95$

t≈1,645 par lecture inverse de la table de la loi normale centrée réduite.

L'intervalle de confiance est : $\left[0,06 - 1,645 \sqrt{\frac{0,06 \times 0,94}{99}}\right]$; $0,06 + 1,645 \sqrt{\frac{0,06 \times 0,94}{99}}$] c'est-à-dire : $\left[0,06 - 0,04; 0,06 + 0,04\right]$ donc finalement : $\left[0,02; 0,10\right]$

C.1° a)
$$p_0 = 0.25$$

b)
$$P_{Cn}(C_{n+1}) = 0.97$$

$$P\overline{C_n}(C_{n+1}) = 0.15$$

$$\begin{array}{ll} 2^{\circ} & C_1 = (C_0 \cap C_1) \ \cup \ (\overline{C_0} \cap C_1) \\ & p_1 = P(C_1) = P(C_0 \cap C_1) + P(\overline{C_0} \cap C_1) \ \text{car ces deux \'ev\'enements sont incompatibles} \\ & p_1 = P(C_0). \ P_{C_0}(C_1) + P(\overline{C_0} \). \ P_{\overline{C_0}} \ (C_1) = 0.25 \ \text{x} \ 0.97 + (1 \text{--} 0.25) \ \text{x} \ 0.15 = 0.355. \end{array}$$

$$3^{\circ} \qquad p_{n+1} = P(C_{n+1}) = P(C_n \cap C_{n+1}) + P(\overline{Cn} \cap C_{n+1}) \text{ car ces deux \'ev\'enements sont incompatibles}$$

$$= P(C_n). \ P_{Cn}(C_{n+1}) + \ P(\overline{Cn}). \ P_{\overline{Cn}}(C_{n+1}) = p_n \times 0.97 + (1-p_n) \times 0.15$$

$$= 0.97 \ p_n \ + \ 0.15 - 0.15 \ p_n = 0.82 \ p_n \ + \ 0.15, \ pour tout entier naturel n$$

4°

a) pour tout entier n, on a :

$$\begin{aligned} u_{n+1} &= p_{n+1} - \frac{5}{6} = 0.82 \; p_n \; + \; 0.15 - \frac{5}{6} \qquad \qquad \text{avec} \;\; p_n = u_n + \frac{5}{6} \\ \\ \text{donc} \;\; u_{n+1} &= \; 0.82 (u_n + \frac{5}{6}) + \; 0.15 - \frac{5}{6} = 0.82 \; u_n + 0.82 \; x \; \frac{5}{6} \; + 0.15 - \frac{5}{6} \\ \\ \text{donc} \;\; u_{n+1} &= \; 0.82 \; u_n - 0.18 \; x \; \frac{5}{6} \; + 0.15 = \; 0.82 \; u_n - 0.15 \; + 0.15 \end{aligned}$$

donc $u_{n+1} = 0.82 u_n$, pour tout entier n;

ce qui permet de conclure que la suite de terme général u_n est la suite géométrique de raison q=0.82 et de premier terme $u_0=p_0-\frac{5}{6}=0.25-\frac{5}{6}=\frac{1}{4}-\frac{5}{6}=-\frac{7}{12}$.

$$\begin{split} u_n &= u_0 \; q^n \; = - \; \frac{7}{12} \, \times 0,82^n \; . \\ donc \; p_n &= u_n + \frac{5}{6} \; = - \; \frac{7}{12} \, \times 0,82^n \; + \; \frac{5}{6} \; . \end{split}$$

b) -1 < 0.82 < 1 donc la limite de la suite (u_n) est égale à zéro

donc la limite de la suite (p_n) est égale à $\frac{5}{6}$.